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EXECUTIVE SUMMARY
Many complex tasks readily and intuitively performed by humans remain difficult or impossible for current computers, and conceptual, physical, and economic barriers prevent their reaching such a goal.  A paradigm change is needed, embracing new concepts and materials, to achieve the required massive intrinsic parallelism.  Small, fast chalcogenide-based Ovonic devices with plasticity, nonvolatility, multistate capability, and biomimetic neurosynaptic behaviors have been successfully demonstrated by Energy Conversion Devices, Inc. (ECD)(1-4).  ECD proposes herein to demonstrate cognitive behaviors of neural networks and more general cognitive computer configurations (5) by fabricating a hybrid chalcogenide-on-silicon x-y array for and on which algorithms, architecture and software can be developed and for which the individual Ovonic device materials and configurations can be optimized.  The demonstration array will be 128 x 128, setting the stage for a subsequent 104 x 104 array with 108 neurosynapses achievable with current technology for which there would be immediate wide  commercial applicability.
I.  INTRODUCTION

Our goal is the creation of a cognitive chip.  As a first step towards that goal, we propose to create as a demonstration chip an Ovonic cognitive neural network consisting of 128 x 128 = 16,384 nodes.  A hybrid chalcogenide-on-silicon x-y array will be fabricated on which Ovonic device materials and configurations can be optimized and for which algorithms, architectures, and software can be developed.  The technology to do so is currently available and opens the door to the scaling of the network up to 104 x 104 = 108 nodes.
Fast, massively parallel networks of that size would have an enormous and immediate range of applications of which data mining; image and sound compression; pattern recognition; medical diagnosis; factoring; intelligent information organization, searching, and analysis are but a few (6).  Moreover, adapting software to use with a neural network instead of a general-purpose binary computer gives orders of magnitude improvement of performance.  For example, we have shown by simulations that when a conventional computer model of a neural network is used for the solution of complicated boundary value problems, spectral codes adapted for our applications are 10 to 100 times faster than the ubiquitous finite element codes.  Implementing the conventional neural network algorithms in our proposed hardware would give a comparable additional increase in speed.  Adapting the algorithms to our unique devices, as described herein, would give a further significant increase in speed.
Relatively small neural networks implemented in silicon-based hardware but primarily in software have been in commercial use for a decade and a half to solve small problems in a wide range of contexts.  However, “artificial neural networks also scale notoriously badly, so most successful simulations have usually used networks with fewer than 1,000 ‘neurons’ in contrast to the 100,000 neurons contained in each cubic millimeter of neocortex”(7).  Similarly, neural networks built in silicon by CMOS technology scale badly as well, with a large footprint for each node and long cycle times, e.g., milliseconds for 10,240 nodes (8).  It is this scaling problem which has been a major impediment to realizing commercially the potential power of neural networks.  
We defeat this scaling problem through the use of Ovonic cognitive devices (1-5, 9), which, as with all Ovonic devices, have the required scaling properties (10).  These would operate as individual devices, in their multistate mode as synapses at each node and in their cognitive mode as output neurons to provide the nonlinear transfer function required by neural networks.  The Ovonic cognitive devices, based on the amorphous chalcogenide technology pioneered at Energy Conversion Devices, Inc. (ECD) by S. R. Ovshinsky, who invented phase-change devices, including optical memory and the Ovonic Universal Memory, and the Ovonic threshold switch in its 2-and 3-terminal configurations.  The Ovonic cognitive devices are small, eliminating the footprint problem, and fast, eliminating the speed problem (10-6 sec is achievable in a 104x104 array).  Their plasticity, nonvolatility, multistate capability, and switching behavior mimic neurosynaptic behavior, greatly increasing the power and utility of the networks and opening up further possibilities of development.  Ovonic cognitive devices share with biological neurons a character noted by Katz:  “Each nerve cell, in a way, is a nervous system in miniature.”(11).
Moreover the Ovonic threshold switch, both in its 2-terminal and 3-terminal configurations, is the fastest known room-temperature device, sustaining 30 times more current density than the best transistors in its conducting state, yet it maintains the submicron footprint and the nanoscale potentiality of the cognitive devices.  It can thus eliminate the large transistors from peripheral drive circuitry and reduce the footprint of the network further.

Our development program has four interwoven components which proceed in parallel over the initial three-year period.  First, the Ovonic cognitive devices are to be optimized both in materials and configurations at ECD.  Second, software development of algorithms, architecture, and code will be carried out at ECD.  The neuromimetic properties of the Ovonic cognitive devices provide unique opportunities to merge the development of the software and hardware.  Third, specifications for a silicon-substrate chip will be defined at ECD and sent outside for design and fabrication.  It will contain all subsidiary circuitry needed for the x-y array of Ovonic devices.  It will be flexible, allowing reconfigurability of the hardware.  Fourth, the Ovonic neural network will be fabricated at ECD on the silicon chip using our unique amorphous chalcogenide development and fabrication facilities.
The demonstration chip, with its 16,384 nodes operating in massive parallelism and with the cognitive capabilities of its Ovonic devices, would have many commercial applications.  We therefore anticipate prompt commercialization of the 128 x 128 prototype.  We propose that the next step in scaling up the network is a 104 x 104 array.  Moreover, because the devices and the networks will be commercially fabricated by the same technology as Intel uses for the Ovonic Universal Memory, we anticipate future arrays of 1010 synapses.  Going beyond 1010 synapses will be enabled by the development of multilayer technology, for which ECD’s Ovonic chalcogenide technology is well suited. 
II.  THE OVONIC DEVICES

A.  THE OVONIC COGNITIVE DEVICE:  The Ovonic cognitive device is based on Ovshinsky’s atomically-engineered multicomponent chalcogenide phase-change materials.  Its physical configuration is a narrow channel of the phase-change material within a thin insulating film.  ECD has in-house fabrication technology capable of reaching the nanoscale, so that density limitations are imposed only by the foundry which fabricates the Si-substrate chip.  
A single Ovonic cognitive device has two cognitive modes of operation, as shown in Figure 1.  The left panel illustrates operation in the cognitive register mode.  The phase-change material is initially amorphous in the reset state with a high channel resistance.  An applied electrical pulse of suitable amplitude and duration induces partial crystallization of the phase-change material with little effect on the resistance.  Repeated application of the pulse increases the degree of crystallization until a continuous crystallization path is formed and a dramatic drop of resistance results, much as a real neuron “fires” when its threshold is reached.  This sigmoidal response of resistance to pulse number makes the Ovonic cognitive device in its cognitive mode ideal for the output neuron of a y-line of the neural network.  
The right panel of Figure 1 illustrates the multistate cognitive mode of operation.  Initially in the set state, partial amorphization and a resistance increase is effected by a reset pulse of greater amplitude than the set pulses of the cognitive mode.  Reset pulses of progressively greater amplitude increase amorphicity and the resistance until the amorphous reset state is regained.  This programmable resistance makes the Ovonic cognitive device ideal for the weighting element of a neural network, functioning as a synapse between an x- and a y-line of the network.  One type of device thus provides any neurosynaptic functionality required by any device in the Ovonic cognitive neural network.
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Figure 1 - Resistance characteristics of a Single Ovonic Cognitive Device.  The cognitive amorphous pre-threshold synaptic regime (left side) culminates in a percolative phase change to crystalline material, functionally equivalent to neurosynaptic switching.  The resistance change accompanying the transition to the crystalline regime can provide readout and transferring of a completed signal to other devices.  The leftmost and rightmost data points of (the high resistance endpoints) both correspond to material that is substantially amorphous, and the material becomes increasingly crystalline toward the center of the figure, with the lowest resistance states having the greatest crystallinity.  The right side is the multi-state cognitive regime.  One should look upon the left side as being either standalone, summing up the synaptic information, or united with the activities of the right side.

In the cognitive mode, the Ovonic cognitive device can carry out all arithmetic operations.  Modular arithmetic can be done in a controllable base n, the number of pulses required to reach the set state, which in turn leads to an efficient factoring algorithm with intrinsically parallel properties and to multistate logic.  The hybrid chip will be designed with sufficient flexibility in its architecture to allow demonstration of an Ovonic cognitive computer designed to exploit these remarkable properties, as well as fabrication of an Ovonic cognitive neural network.  The Ovonic cognitive computer is able to operate in the binary mode, higher modes (n > 2) and mixed modes with different n’s for the registers and for the multistate devices in the network.
The goal for the number of pulses needed for currently existing devices to set reliably in the cognitive mode will be determined by the results of our simulations.  Similarly, the number of resistance states in the multistate mode to be programmed and read reliably will also be determined by our simulations.  Specifications for reliability and stability will be achieved by optimization of device materials and configurations.  We envisage programming currents initially in the range of 0.5-1mA, requiring device diameters of 200nm or less with stable resistive contacts.  Scalability  of Ovonic devices with its concomitant increase of density and speed and decrease of programming current is well accepted (10).
B.  THE OVONIC THRESHOLD SWITCH:  In contrast to the Ovonic cognitive device, which is based on the Ovonic phase-change materials, the Ovonic threshold switch is based on multicomponent chalcogenide semiconductors atomically engineered to remain stable in the amorphous phase, following Ovshinsky’s design principles.  The Ovonic threshold switch retains high resistance until a threshold voltage is reached, when it switches at sub-picosecond speeds to a low resistance state, reversibly and symmetrically, independent of voltage sign.  It remains in that conducting state until the current falls below a holding value.  The current density presently achieved is 30 times higher than that of the best transistors.  We shall therefore use Ovonic threshold switches in place of the large transistors required to generate the above programming currents, thereby substantially reducing the footprint of the control circuitry of the network, as shown in Figure 2.  The 3-electrode Ovonic threshold switch has been demonstrated, showing modulation and control of the threshold voltage and, remarkably, elimination of the holding current.
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III.  THE HYBRID COGNITIVE NETWORK CHIP
We propose to have an ASIC wafer specifically designed to our specifications and made and processed by an outside foundry.  The resulting CMOS chip will have a simple and flexible structure so that the widest possible variety of neural network and cognitive computer networks can be tested.  The network structure will be completed with the addition to the chip of the Ovonic chalcogenide technology in our facility.  It will have 128 rows and 128 columns as indicated schematically in Figure 3.  This array size was chosen to make networks of size suitable for effective demonstration of the technology’s potential without being overly difficult to process.

In the particular case of the Ovonic cognitive neural network, at each intersection the rows and columns are connected by 128 x 128 isolated Ovonic cognitive devices operating in the multistate mode (synapses), as indicated in Figure 3 by an encircled X.  Row circuitry will allow input from an external input vector or feedback from the columns into the rows.  Column circuitry will allow sensing of the read signal along each column and will have separate Ovonic cognitive devices (neurons) to implement neuronal functionality.  In the case of the Ovonic cognitive neural network, these would operate in the register mode and provide the requisite sigmoidal transfer function required by neural networks.  The rows will have pulse-generating circuitry including Ovonic threshold switches for programming the synapses as will the columns for programming the neurons, cf Figure 2.  A flexible set of control signals will set pulse parameters, route signals, and provide for varied implementation of Ovonic cognitive neural networks and of cognitive function.

The specifications from which outside silicon architects will design the CMOS chip will be established by our simulation of a range of candidate networks, of both Ovonic cognitive neural network and Ovonic cognitive computer types.  Completed chips will be tested and characterized and array specifications set for fabrication of demonstration chips.  

[image: image3.wmf]Area=

8 transistors

Delay=1

-

2 gates

Current > 10mA

IN

VCC+2Vh

-2Vh

Output

Load

Figure 2

–

Use of the Ovonic threshold switch in conjunction with normal 

CMOS:  This drive has 1/3 area, 1/5 the delay and 10X current of

an all

-

CMOS driver

Area=

8 transistors

Delay=1

-

2 gates

Current > 10mA

IN

VCC+2Vh

-2Vh

Output

Load

Figure 2

–

Use of the Ovonic threshold switch in conjunction with normal 

CMOS:  This drive has 1/3 area, 1/5 the delay and 10X current of

an all

-

CMOS driver


Figure 3 - Proposed structure of test chip
IV.  SOFTWARE CONSIDERATIONS
The design of the Ovonic cognitive neural network and Ovonic cognitive computer networks, the creation of the algorithms for network functioning, and the optimization goals for the Ovonic cognitive device and Ovonic threshold switch are intimately interconnected.  Simulation on conventional computers allows us to break though this web of interrelations.  For example, the accuracy of the Ovonic cognitive neural network will depend on the number of discrete resistivity states in the multistate mode, the number of discrete resistivity states in the registers, the minor fluctuations in the corresponding resistivity values during operation, and the size of the networks.  Through sensitivity analyses for the first three and scaling analysis for the last, we shall establish minimum acceptable values for each in relation to standardized tasks.  Thus goals will be established for device operation, and applications will be established for which the 128 x 128 array is well suited.  A likely result of the simulations will be a clear demonstration that before using existing algorithms for cognitive neural networks, they will have to be adapted to the Ovonic cognitive device characteristics.  Most are not very suitable for implementation in hardware because of the above issues (12).  Thus, even though neural networks have a long history, algorithm development will be necessary for our Ovonic cognitive neural network.

For the Ovonic cognitive computer, there is no base to build on other than the novel algorithms we have already established for arithmetic operations, factoring, and multistate logic.  This activity will continue in order to establish the design specifications of the flexible CMOS chip and explore the opportunities created by the unique capabilities of the Ovonic cognitive devices and the Ovonic threshold switch.
Based on the experience with simulations, we shall establish a mathematical framework for describing our networks which will facilitate algorithm development, software architecture, and code writing in coordination with specification of the CMOS chip architecture and that of the superposed Ovonic network.  One candidate formalism is functional chip design through use of functional equations.

One promising avenue for substantially decreasing sensitivity to the discreteness of the resistance values of the Ovonic cognitive devices and to their fluctuations proceeds by representing data by random points in a high dimensional space (13).  Consider two distinct input data represented by two such random points in that space.  When operated on by our network, the statistical fluctuations smear the representative points of the output data.  Nevertheless, we have shown that the likelihood that the output data will be mistakenly identified as belonging to the same input data decreases dramatically with increase in the dimension of the space in a manner insensitive to the discreteness of the resistance. 

V.  WORK PLAN

A.  Algorithms, Architecture And Software:  Learning algorithms appropriate for Ovonic cognitive devices will be developed prior to design of the 128 x 128 array.  Existing learning algorithms need to be adapted so as to increase the tolerance to component inaccuracies while retaining a satisfactory overall network performance.  Improved new algorithms will be developed.  Algorithms will later be fine-tuned on the actual chips to promote fault tolerance using promising methods proposed in the literature and our own novel schemes.
B.  Device Optimization:  The basic technology for building individual Ovonic cognitive devices has been developed by ECD.  In this program we will optimize the performance of the devices both in the register and the programmable resistance (multistate) modes.  We will develop a simplified chip design that does not include the silicon circuitry and has Ovonic devices spaced to accommodate wafer probes.  We will address the reliability and stability of the resistance states, and make arrays which will facilitate statistical evaluations of device characteristics.  
C.  Chip Development:  The 128 x 128 network CMOS chip will have a flexible structure so that the widest possible variety of neural and cognitive network structures can be pursued.  It will have 128 rows and 128 columns of isolated chalcogenide Ovonic memory elements.  A flexible set of control signals is provided to enable a variety of functional implementations.  The chip architecture will follow from the learning algorithms.  Most of the silicon work will be done under subcontract to an organization specializing in such architectural work.

Fabrication on the CMOS chip of the Ovonic cognitive neural network and the network sub-structures via our chalcogenide technology will be performed at ECD with thin-film deposition and micro-lithography patterning techniques both familiar and similar to most conventional semiconductor manufacture.  Specifically, the custom silicon driver wafers will have been designed and laid out with an open architecture that facilitates maximum wiring flexibility for multiple neuronic configurations at ECD.  This design work will be done by a subcontractor, working with ECD.  The design needs to be customized and optimized for use with the switching and cognitive alloys. Using the design, wafers with CMOS circuit components will be fabricated at a silicon foundry.  ECD has a clean room facility that is used to process our chalcogenide cognitive and switching devices.  In our facility we would then complete the Ovonic chip by making chalcogenide cognitive devices and threshold switches, followed by the final metallization step.

D.  Implement Algorithms and Demonstrate Functionality:  The algorithms will be implemented on the chip using programs to generate pulses from the on-chip pulse generators.  We plan to exploit the flexibility we design into the chip to be able to adjust synaptic weights using both the mode of programmable resistance and the Ovonic cognitive operation.  Test patterns will be inputted, and then the circuit configuration will be adjusted according to the output vectors.  Successive implementation of our novel learning algorithms will continually increase the accuracy of the performance of the circuit.  
E.  Cost Estimates:  This plan requires an effort of 62 man-years over the course of three calendar years, including subcontracted work.  It incorporates acquisition of equipment to provide for appropriate device fabrication and to ease the transition to ordinary production process equipment.  It also incorporates fabrication of the base CMOS test wafers subcontracted to a conventional ASIC house. The total estimated cost is $40 million.
The timing of the tasks is shown in the Gantt Chart.
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VI.  APPLICATIONS

Possible applications of a cognitive neural network of which we propose to build a 128 x 128 prototype are numerous and wide ranging.  They fall into two broad categories, information processing and the simulation and optimization of dynamic systems, although aspects of each are present in the other.  We interpret dynamic in the broadest possible sense, incorporating repeated operations such as iteration, repeated events in real time, and processes continuous in time.  Within each category there are far too many possibilities to enumerate here, and we give only a few prominent examples.

In the dynamic systems category, two quite different applications illustrate the range of possibilities.  The first is speech recognition.  Current digital programs work with high accuracy for unknown speakers with a limited preset vocabulary in a stimulus-response mode.  Digital programs which are trained to recognize the speech of a single individual work with less accuracy but with a much larger vocabulary.  Within the context of speech with pauses between each word, they can recognize up to 20,000 words.  Most such programs simulate neural networks in conventional computers.  Our cognitive neural networks will greatly increase hearing capability through their superior scalability to higher densities as well as superior speed via hardware architecture adapted to the task as opposed to the hardware of a general purpose computer, via software adapted to the hardware as well as to the task, and via intrinsically faster devices.  The goal would be understanding a 50,000 word vocabulary of an unknown speaker.  It is a holy grail, and we believe it reachable via our proposed technology when scale up is achieved.

The second concerns the solution of complicated boundary value problems, which we have discussed in the introduction.  Finite element programs are in routine use in all fields of engineering for design and for analysis, and similarly in architecture.  Our current software for use with conventional computers is 10 to 100 times faster for the complicated thermal problems we have studied, and the speed up is generic and not related to the specific problem.  Substituting the hardware of our cognitive neural network for the 100 x 100 simulated neural networks we have used thus far would yield a further dramatic speed up.  Thus, a substantial market would exist for our 128 x 128 cognitive chip once commercialized subsequent to the completion of this proposal.

The information processing category is vast.  Examples are static language processing, e.g. translation as opposed to speech recognition in real time; intelligent information organization, searching, and processing; pattern recognition; etc.  The retrieval of an image from a database is a challenging problem in searching and pattern recognition.  For this problem, the most popular types of learning algorithms require operator-controlled training in which many repeated trials are required before the neural network would learn to recognize each image in the database.  A typical example is the back-propagation algorithm which is estimated to be used in 80% of neural network simulations.  These algorithms are too slow because of operator intervention.  There is instead a neural network architecture, the Kohonen self organizing map, which trains itself by a powerful learning algorithm given the input data without prior knowledge by the operator of the correct neural network output.  We have expert knowledge of this architecture and learning algorithm.

In one study (14), 200 to 300 pictures were retrievable using a simulated 250 x 250 neural network to process local statistical measures of texture and color.  The scaling behavior of such a network has not been studied, but presumably relates directly to the information storage capacity of the network.  If so, with our 104 x 104 network and 16 states per synapse, of order 2 x105 images could be stored and retrieved.  Adaptation of our hardware, our greater speed, and algorithm and program optimization could lead to orders of magnitude improvement of this figure.  This would be attractive for rapidly growing digitized museum, library, criminal, homeland security, and other archives.

Another information processing application is secure encryption.  Information can be stored in our Ovonic cognitive device in the cognitive mode, free from forensic attack with no possibility of retrieval without the key.  The minor resistivity changes prior to the set threshold are completely hidden, masking the number of applied pulses and the number of pulses to threshold.  Much information is thus encrypted in the number of pulses in each device.  Pulse shape provides further degrees of freedom for encryption.

VII.  ACCOMPLISHMENTS; NEXT STEPS

At the end of the three-year program, there will be accomplishments which lead naturally into well-defined next steps towards commercialization, starting with the lowest-hanging fruits.  We summarize some of the principal accomplishments and follow-up actions in the next two subsections.

A.  ACCOMPLISHMENTS:

1.
The Ovonic cognitive devices and 2- 3-terminal Ovonic threshold switches will be optimized for incorporation in Ovonic cognitive neural nets and Ovonic cognitive computers.  The optimizations will differ according to the application with specific optimizations for specific networks.

2.
A flexible hybrid chip architecture will be developed which admits a range of network fabrications including different neural networks and cognitive computers.

3.
Algorithms will be developed and implemented in software and hardware which exploit optimally the unique properties of the Ovonic devices.

4.
Applications for both the cognitive neural network and the cognitive computer will be identified which are ready for commercialization at the scale of the 128 x 128 demonstration chip.  That is, the demonstration chip will become a commercial product.

5.
A program for scaling up to the 104 x 104 chip will be defined.

B.  NEXT STEPS

1.
Preparation for the production of the 128 x 128 chip by Intel.

2.
Production of demonstration chips at ECD for initiation of marketing.

3.
Initiation of a two-year program for development of the 104 x 104 chip.

4.
Initiation of a three-year program for increasing chalcogenide content of the hybrid chip, replacing silicon-based functionality with Ovonic chalcogenide-based functionality, with the ultimate goal of an all-thin-film chip.  We already have all necessary ingredients.

5.
Design of an Ovonic/Intel thin-film-computer to operate flexibly in a conventional binary mode, an Ovonic multistate mode, or a hybrid mode for maximum commercial penetration.

6.
These remarkable advances in the conceptual structure of computers will necessitate rethinking of the theoretical foundations of computer science.  Focus should begin on the commercial implications of that transformation.

7.
Present emphasis in the semiconductor industry has been changing from increase in speed to architecture development.  With the ECD Ovonic chalcogenide architecture, speed increases can be achieved as well as increased functionality through architecture.  The increase in speed arises from both the great intrinsic speed of the Ovonic devices, their high intrinsic parallelism, and their capacity to scale down to the nanoscale and below without degradation of performance.  Their nonvolatility prevents the thermal budget from rising catastrophically as the scale is reduced.  Moreover, achievable current densities and currents remain so high that current proves no barrier to further miniaturization.  The present Intel emphasis on multicore architecture blends naturally with our proposed technology.

8.
Regarding the business relationship between ECD and Intel, we recognize Intel’s enormous contributions and leadership in the computing field.  We, therefore, would agree beforehand that ECD’s proprietary position in this area should be used to protect Intel’s leadership.
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